Cram$\acute{\text{e}}$r–Rao Bound for Constrained Parameter Estimation Using Lehmann-Unbiasedness
نویسندگان
چکیده
منابع مشابه
New Cramer-Rao-Type Bound for Constrained Parameter Estimation
Non-Bayesian parameter estimation under parametric constraints is encountered in numerous applications in signal processing, communications, and control. Mean-squared-error (MSE) lower bounds are widely used as performance benchmarks and for system design. The well-known constrained Cramér-Rao bound (CCRB) is a lower bound on the MSE of estimators that satisfy some unbiasedness conditions. In m...
متن کاملA constrained hybrid Cramér-Rao bound for parameter estimation
In statistical signal processing, hybrid parameter estimation refers to the case where the parameters vector to estimate contains both non-random and random parameters. Numerous works have shown the versatility of deterministic constrained Cramér-Rao bound for estimation performance analysis and design of a system of measurement. However in many systems both random and non-random parameters may...
متن کاملHard-constrained vs. soft-constrained parameter estimation
The paper aims at contrasting two different ways of incorporating a-priori information in parameter estimation, i.e. hard-constrained and soft-constrained estimation. Hardconstrained estimation can be interpreted, in the Bayesian framework, as Maximum A-posteriori Probability (MAP) estimation with uniform prior distribution over the constraining set, and amounts to a constrained Least-Squares (...
متن کاملExtended FNS for Constrained Parameter Estimation
We present a new method, called “EFNS” (“extended FNS”), for linearizable constrained maximum likelihood estimation. This complements the CFNS of Chojnacki et al. and is a true extension of the FNS of Chojnacki et al. to an arbitrary number of intrinsic constraints. Computing the fundamental matrix as an illustration, we demonstrate that CFNS does not necessarily converge to a correct solution,...
متن کاملLower-Bound Estimation for Multi-Bitwidth Time-Constrained Scheduling
-In high-level synthesis, accurate lower-bound estimation is helpful to explore the search space efficiently and to evaluate the quality of heuristic algorithms. For the lower-bound estimation of the scheduling problems, previous works mainly focus on the number of resources with uniform bitwidth. In this paper, we study the problem of lower-bound estimation on bitwidth summation of functional ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2019
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2018.2883915